Defenders, Know Your Operating System Like Attackers Do!
Not a technical diary today but more a reflection… When I’m teaching FOR610[1], I always remind students to “RTFM” or "Read the F… Manual". I mean to not hesitate to have a look at the Microsoft document when they meet an API call for the first time or if they are not sure about the expected parameters.
Many attackers have a very deep knowledge of how targeted operating systems are behaving and what are the controls in place or features that could be (ab)used by malicious code. When you’re analyzing malware samples, it’s very important to quickly spot interesting blocks of code (by learning which interesting OS feature they use). A classic example is the API call VirtualAllocEx()
[2] which allocates a region of memory within the virtual address space of a specified process:
LPVOID VirtualAllocEx( HANDLE hProcess, LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect );
hProcess
is a handle to a process returned by OpenProcess()
. Then, you use WriteProcessMemory()
to write specified contents into the memory of the targeted process. When you read this, you can ask yourself: “Wait… why does Microsoft allow a process to inject code into another process?”. The answer is simple: because it’s a key feature of the operating system and it can be used for many totally legit reasons. Think about antivirus programs! It’s common that AV injects code into processes of a process (ex: in browsers to inspect downloaded data).
API calls are a key aspect of malware, not only the function itself but also its options. Here is another example: If you see a VirtualProtect
, check the last parameter:
LPVOID VirtualAlloc( LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect );
flProtect
allows you to set the memory protection for the region of pages to be allocated. If you see the value 0x40 (PAGE_EXECUTE_READWRITE) set for this parameter, it means the newly allocated memory will contain executable code![3]
An approach to flag some sample during the triage process is to identify the group of API’s that are used to perform suspicious actions like:
- Code injection
- DLL operations
- Dropping 2nd stage
- …
In my triage process, I use FLOSS[4] because it can extract a lot of API calls from strings, stack strings, etc… Then I parse the output to YARA to match interesting groups of API. Example:
remnux@remnux:/MalwareZoo/20210316$ floss sample.exe | ./yarawrapper.py suspicious-api-calls.yara Matching: api_address_search Matching: dll_operations
Why YARA? Because it helps to create useful rules like "any of this", "all of this", and, or, groups of APIs. A sample of YARA rules is available here[5].
Happy hunting!
[1] http://for610.com
[2] https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
[3] https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
[4] https://github.com/fireeye/flare-floss
[5] https://github.com/xme/yara-rules/blob/main/suspicious-api-calls.yara
Xavier Mertens (@xme)
Senior ISC Handler - Freelance Cyber Security Consultant
PGP Key
Comments
Anonymous
Dec 3rd 2022
9 months ago
Anonymous
Dec 3rd 2022
9 months ago
<a hreaf="https://technolytical.com/">the social network</a> is described as follows because they respect your privacy and keep your data secure. The social networks are not interested in collecting data about you. They don't care about what you're doing, or what you like. They don't want to know who you talk to, or where you go.
<a hreaf="https://technolytical.com/">the social network</a> is not interested in collecting data about you. They don't care about what you're doing, or what you like. They don't want to know who you talk to, or where you go. The social networks only collect the minimum amount of information required for the service that they provide. Your personal information is kept private, and is never shared with other companies without your permission
Anonymous
Dec 26th 2022
9 months ago
Anonymous
Dec 26th 2022
9 months ago
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> nearest public toilet to me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
Anonymous
Dec 26th 2022
9 months ago
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> nearest public toilet to me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
Anonymous
Dec 26th 2022
9 months ago
Anonymous
Dec 26th 2022
9 months ago
https://defineprogramming.com/
Dec 26th 2022
9 months ago
distribute malware. Even if the URL listed on the ad shows a legitimate website, subsequent ad traffic can easily lead to a fake page. Different types of malware are distributed in this manner. I've seen IcedID (Bokbot), Gozi/ISFB, and various information stealers distributed through fake software websites that were provided through Google ad traffic. I submitted malicious files from this example to VirusTotal and found a low rate of detection, with some files not showing as malware at all. Additionally, domains associated with this infection frequently change. That might make it hard to detect.
https://clickercounter.org/
https://defineprogramming.com/
Dec 26th 2022
9 months ago
rthrth
Jan 2nd 2023
8 months ago